
Multi-Tier Power-Saving Method in Cloud
Storage Systems for Content Sharing Services

Horleang Choeng, Koji Hasebe, Hirotake Abe, and Kazuhiko Kato

Department of Computer Science, University of Tsukuba
1-1-1, Tennodai, Tsukuba 305-8573, Japan

horleang@osss.cs.tsukuba.ac.jp, {hasebe,habe,kato}@cs.tsukuba.ac.jp

Abstract. Fast-growing cloud computing has a mass impact on power
consumption in datacenters. In our previous study, we presented a power-
saving method for cloud storage systems, where the stored data were
periodically rearranged in a disk array in the order of access frequency.
The disk containing unpopular files can often be switched to power-
saving mode, enabling power conservation. However, if such unpopular
files became popular at some point, the disk containing those files spin
up that leads to increase power consumption. To remedy this drawback,
in this paper, we present a multi-tier power-saving method for cloud
storage systems. The idea behind our method is to divide the disk ar-
ray into multiple tiers. The first tier containing popular files is always
active for fast response, while lower tiers pack unpopular files for power
conservation. To maintain such a hierarchical structure, files are periodi-
cally migrated to the neighboring tiers according to the access frequency.
To evaluate the effectiveness of our proposed method, we measured the
performance in simulations and a prototype implementation using real
access traces of approximately 60,000 time-series images with a dura-
tion of 3,000 hours. In the experiments, we observed that our method
consumed approximately 22% less energy than the system without any
file migration among disks. At the same time, our method maintained a
preferred response time with an overall average of 86 ms based on our
prototype implementation.

Keywords: power-saving · storage system · cloud computing · content
sharing service.

1 Introduction

Cloud computing has grown rapidly over the last few decades, resulting in a
dramatic increase in power consumption of datacenters. According to a report
[15], in 2014, datacenters in the US consumed approximately 1.8% of the total
electricity consumption. As a high percentage of the total computing energy is
consumed by storage systems, a number of attempts to reduce storage power
consumption. Many of these stuides were essentially based on the commonly
employed technique of skewing the workload toward a small subset of disks,
thereby enabling the other disks to remain in standby (i.e., low-power) mode.



Massive Arrays of Idle Disks (MAID) [5] is one of the first efforts at this approach.
MAID distributed the workload to a subset of disks used as a cache to preserve
data. Popular Data Concentration (PDC) [12] periodically rearranged the data
based on their new access frequencies in a disk array.

In our previous study [11], we proposed a method based on the idea of PDC.
Our method efficiently gathered unpopular files in to a part of the disk array
in an environment where large amounts of files were continuously uploaded.
However, most of the uploaded files were rarely accessed as time elapsed, but
accesses reoccurred occasionally and seemed to happen randomly. The algorithm
proposed in our previous study failed to move the files that became popular again
from the unpopular disks to the active disks.

To remedy this drawback, in this paper, we propose a multi-tier power-saving
method for cloud storage systems for cloud content sharing services. Our method
divides the disk array into multiple tiers. The top tier, consisting of always active
working disks, stores popular files for fast response, while the lower tiers, consist-
ing of archiving disks, pack unpopular files for power conservation. To maintain
this hierarchical structure, files are periodically migrated to the neighboring tiers
according to the access frequency.

To evaluate the effectiveness of our proposed method, we measured the per-
formance in both simulations and a prototype implementation using real access
traces of approximately 60,000 time-series public photographs on 500px [1] for
3,000 hours. In the experiments, we measured the performance of power-saving
and response time in a system consisting of two tiers. The results showed that
our method consumed approximately 22% less energy than a system without
any file migration among disks. Moreover, we observed that our method main-
tained a preferred response time with an overall average of 86ms based on our
prototype implementation.

The rest of this paper is organized as follows. Section 2 presents related work.
Section 3 gives the details of the system design. Section 4 introduces the power
consumption model for our evaluation. Sections 5 and 6 present the results of our
simulations and evaluation using an implementation. Finally, Section 7 concludes
the paper and presents future work.

2 Related Work

There have been a number of studies on saving power consumption in storage
systems (cf. also [4] for a comprehensive survey of this research area). These tech-
niques can be classified into the following three categories according to variations
in their approach.

The first category focuses on popularity and concentrates popular data on
specific disks. Massive Array of Idle Disks (MAID) [5] provides specific disks
that are used as a cache to store frequently accessed data, thereby reducing
accesses to other disks. PDC [12] periodically reallocates data in the storage
array according to the latest access frequencies.



The second category uses NVRAM to extend the standby mode period by
caching data to a write store. A typical example is Pergamum [10], which uses
NVRAM to buffer write accesses and store data signatures and thus reduce the
number of direct accesses to the disks.

The final category considers redundancy (i.e., data replication). In DIverted
Accesses (DIV) [6], original and redundant data are separated onto different
disks, thereby allowing I/O requests to be concentrated onto the disks that
contain the original data. Hibernator [13] applies the idea of PDC to RAID and
Dynamic Rotations Per Minute (DRPM) [14]. RIMAC [18] provides two-layered
caches, one for storing data and the other for parity conservation. Power-Aware
RAID (PARAID) [17] is another power-saving technique for RAID. It allocates
the replicas in a specific way so that data are collected or spread to adapt to
changes in operational workloads.

Many of these methods mentioned above were targeted at small-scale storage
systems. Recently, applications of these techniques to datacenter-scale storage
systems have been actively investigated. As a typical example, GreenHDFS [7]
divides Hadoop Distributed File Systems (HDFS) into hot and cold zones. An-
other example is a study that used data replication extended from GreenCloud
[9] for energy-efficient [3]. This method can reduce power consumption, band-
width usage, and communication delays substantially.

Our previous study [11] also aims to save power consumption in large-scale
storage systems. That study specifically focuses on the issue of how to efficiently
aggregate workloads in an environment where large amounts of files are con-
tinually uploaded, as typified by the storage systems for cloud content sharing
services. However, as mentioned in the previous section, in that study, files that
became less popular over time became popular again at some point, and it was
impossible to remove it from an unpopular disk. This paper extends the method
of [11] while solving this problem.

3 System Design

Our target systems consist of hundreds to thousands of disks, application servers,
I/O servers, and an index manager. Fig. 1 illustrates the overall design, where
the I/O servers are omitted for readability. Each disk is physically connected to
an I/O server and is logically classified into one of the groups (tiers): Tier 1 to
Tier n, and the empty disk pool. The disks in the top tier (Tier 1) are called
working disks, while the rest are called archiving disks. We assume that our
system continuously uploads the files, such as those in real content sharing service
platforms. The application servers manage all I/O requests from the clients. The
index manager provides a lookup service for file accesses to any working and
archiving disks. An application server always writes the files uploaded by the
clients to one of the top tier. After uploading, the index manager assigns each
file a unique ID and records it with the disk index in which the file is stored.

The number of working disks increases one-by-one as clients sequentially
upload files up to an initial number. If the number of working disks reaches the



Fig. 1. System design.

maximum, any access to a full working disk leads to file migration. At this point,
an archiving disk is added. Then, some of the most unpopular files are migrated
to an archiving disk supplied by the empty disks. The index manager records
the file name and disk index in the archiving disks to which the file is migrated.
If the files are not migrated, the disk index is the corresponding disk itself. File
migration is conducted between neighboring tiers as follows (for 1 ≤ n ≤ n− 1).

Migration from the i-th tier to i + 1-th tier: This migration happens in two
cases: (1) whenever any disk in the first tier becomes full after clients up-
loaded the files, and (2) whenever any disk in the i-th tier becomes full after
the files are migrated from the neighboring disks.

Migration from i + 1-th tier to i-th tier: This migration happens if the fre-
quency of accesses of a file in the i-th tier reaches the predetermined thresh-
old. The file is moved to a disk in the i + 1-th tier and then sent to the
client.

Here we note that the number of accesses to be migrated is critical because
it affects the whole system. The reason is that if the file is migrated with every
access, we can reduce many accesses to the archiving disks, but it fills the working
disk faster, leading to another migration later. We observed the percentage of
power-saving based on the number of accesses to be migrated, which is described
in Section 5. The application server ensures that the total number of files in
the working disks is no more than 30% of the total files of the whole system.
If the volume exceeds its threshold, a new working disk is added to the first
tier, enabling the scalability of the system. At the start of the upload, all files
are stored in the working disks, and the archiving disk does not exist. When
the migration occurs, a disk is pulled from the empty disks and named as the
archiving disk to supply the need to store the migrated files. Another disk is
added whenever a destination archiving disk is full.



Fig. 2. State transitions for three-state disk drive.

Table 1. HDD parameter setting.

Symbol Description Value

Dsi Disk capacity 1,000GB

Dra Average data transfer rate 125MB/s

Pid Power consumption in idle mode 3.36w

Psb Power consumption in standby mode 0.63w

Pac Power consumption in active mode 5.9w

Psk Power consumption to seek 5.9w

Pup Power consumption to spin up 24w

T rd
sk Average seek time for read 8.5ms

Twr
sk Average seek time for write 9.5ms

Ttr Rotational latency 4.16ms

Tup Spin up time 10s

Tq Time for current processing I/O requests -

Ttf Data transfer time -

Tth Idleness threshold 85.6s

4 Power Consumption Model

A modern disk drive enables dynamic power management, meaning that there
are transitions among the three states called active, idle, and standby modes.
Fig. 2 illustrates the state transitions. Data transfer occurs in the active mode.
When a disk is awaiting I/O requests, it is transitioned to the idle mode, where
the disk continues to rotate. A disk in idle mode is transitioned to the standby
mode after a fixed threshold time (the idleness threshold) has elapsed since the
last access. In the standby mode, the spindle is at rest, and the heads are parked,
resulting in power savings.

Table 1 summarizes the model parameters and the values that we used in our
evaluations. These settings are based on the specifications of the Seagate Desktop
HDD ST1000DM004 [2]. In the table, the values for Tq and Ttf are unspecified
because they depend on the finishing time of the previous I/O request and the
size of the data transferred, respectively. In our model, the power consumption
of a disk drive executing an I/O request is estimated as the sum of the power
required for transferring data and the power required for state transition. For
example, the total power consumed by a disk in standby mode spinning up and
performing I/O requests is Tup · Pup + Tacs · Pac [mJ], where Tacs denotes the



access time explained below. The response time of access to a disk depends on
the current mode of the disk. When we set Tacs as the access time (I/O request
processing time), Tsk as the seek time, Trt as the rotational latency, and Ttf as
the transfer time, we have an equation as

Tacs = Tsk + Trt + Ttf .

The response time of accesses in each mode is given by

Trp =


Tacs (if it is in idle mode),

Tacs + Tup (if it is in standby mode),

Tacs + Tq (if it is in active mode).

It is critical to set the idleness threshold to a suitable value if we wish to
reduce the power consumption using dynamic power management. A too-small
threshold could result in a frequent spin-up, requiring considerable power (de-
noted by Pup). Conversely, a too-long threshold could prohibit state transitions
from idle to standby mode, which could further reduce power consumption. To
set a suitable idleness threshold, we use the well-known break-even time tech-
nique, i.e., we determine the amount of time a disk must be in standby mode to
conserve the same energy consumed by transitioning the disk down and back to
the active mode. More precisely, the break-even time (denoted by Tbe) can be
calculated as follows. First, Tbe can be decomposed into

Tbe = Tup + Tmin
sb .

Here, Tmin
sb is the minimum length of the standby mode after completing the

previous I/O request satisfying the following equation:

Psb · Tmin
sb + Pup · Tup = Pid(Tmin

sb + Tup).

This equation means that the total power required to be in standby mode
and spin-up (described as the left-hand side) is equal to the total power required
to remain in the idle mode (described as the right-hand side). From these results,
we obtain

Tbe =
Pup · Tup − Psb · Tup

Pid − Psb
.

In our model, Tbe = 85.6 sec, which we used as the idleness threshold in our
evaluations.



Fig. 3. Hourly average number of access of images.

5 Simulation

5.1 Preparation

Photographs for simulation. For simulations, we used 63,204 time-series
images from 500px [1], which is an online photo sharing service. All photographs
include the cumulative number of accesses, “likes” (the number showing the
popularity of the photographs voted by users), comments, and tag information
of every hour for 3,000 hours. We analyzed the bias of the popularity of each
photograph to evaluate the relationship with the time since they were uploaded.

Analysis of photographs for simulation. Fig. 3 shows the hourly average
number of accesses of images over 3,000 hours. Here, the horizontal and vertical
axes represent the elapsed time and the average number of access per hour, re-
spectively. Consequently, we can assume that many accesses tend to concentrate
on some specific images. Fig. 4 shows the distribution of total accesses of each
image after 3,000 hours elapsed. The maximum access is 182,669 times, while
the minimum access is only two times. The rate of total accesses in the top 1%
of total images holds almost half of the total accesses, while the rate of accesses
in the top 30% of the total images holds almost 90% of the total accesses. Con-
sequently, we can assume that most of the accesses to the images belong to the
top 30% of the total images. Therefore, we consider that by storing 30% of the
images in the working disks, and the rest (around 70%) in the archiving disks,
we can reduce the power consumption of the whole system. Most (90%) of the
accesses will likely be concentrated on the working disks, and the workload in
archiving disks is at rest, resulting in power consumption reduction.

Parameters and setting. Based on our system design in Section 3 and the
power consumption model in Section 4, we developed a simulator. The number of



Fig. 4. Distribution of total accesses after 3,000 hours.

Table 2. Workload setting.

Type Value

File size 5MB

Write 26 images per minute

Read data 500px’s image access pattern

Simulation duration 3,000 hours

accesses mimics the access traces of the images mentioned in Section 5.1. Table
2 describes the workload setting. In our simulations, the working disks initially
consist of eight disks, while the archiving disks consist of zero disks supplied from
empty disks (21 disks were used at the end of the simulations). The number of
archiving disks increased one-by-one, depending on the file migration from the
working disks.

5.2 Simulation results

We observed the power consumption of our system and compared it to a simple
system in which the same set of files are uploaded to an array of disks (increas-
ing one-by-one) without any file migration, named no-migrating system. The
number and type of disks in this no-migrating system are the same as those in
the proposed system. Because our proposed method focuses on file migration
between disks in different tiers (working disk and archiving disk), it is critical
to define the two main factors for migration. The first factor is unpopular files.
In our experiments, we assume that unpopular files are those with less access
frequency or with the oldest access time. The second factor is to determine the
number of accesses of files needed to migrate back to any working disk because
the performance of the system would worsen if many migrations occur. We ex-
perimented on these two main factors to determine the best migration method
for our proposed system. Table 3 illustrates the result of our experiment on the
percentage of power-saving, where WD and AD represent working and archiving



Table 3. Experiment on percentage of power-saving.

XXXXXXXXXWD→AD

AD→WD
1 access 3 accesses 5 accesses 10 accesses 20 accesses

Number of accesses 17.8% 19.4% 21.3% 22.1% 22.1%

Old accessed time 18.6% 20.0% 22.2% 23% 21.9%

Fig. 5. The change of percentage of power-saving.

disks, respectively. The results show that the best result for power consumption
is when we migrate the oldest accessed files from working disks to archiving disk
and when the number of access to old files is more than 10 times.

Fig. 5 shows the change in the percentage of power consumption of the best
results we described above. Here, the horizontal and vertical axes represent the
elapsed time and the percentage of power-saving. We started measuring the
power consumption between the proposed method and a no-migrating system
after the migration process started. Our proposed system conducted file migra-
tion, while the files stored in the no-migrating system are static. According to
our results, our method performed better with a maximum of 29% less power
consumption. Also, over the 3,000 hours, this method consumed approximately
22% less energy than the no-migrating system.

Since simulation is not enough to evaluate our proposed system, we conducted
a prototype implementation, described in Section 6.

6 Experiments on Implementation

6.1 Parameters and setting

We observed the response time in an environment where the system workload
was the same as that in the simulation described in Section 5. Our prototype
consisted of a client server and an application server connected to an array of
12 disks, each of which was equipped with a single 3 TB hard disk drive. We



assumed that the capacity of each disk is 1 TB to match our simulation. Because
of the limitation of our experimental environment, we mimicked the simulation
of our target system in the following way. All the disks were created as RAID
0 and were connected to the app server. The app server consisted of an index
manager mapping the location of each disk and file. We evaluated the response
time by measuring the time from sending requests until the data were delivered
to the clients. To avoid the effect of the cache, we disabled the cache in each
disk before experimenting and erased the memory cache every 30 sec during
the experiment. Since the controller of our RAID 0 disks can only set the spin-
down and spin-up time (for a power-saving mode) to a minimum of 30 min, we
mimicked the spin-down and spin-up time as the same as those in the simulation.
In other words, we mimicked the spin-up time by letting the server wait before
accessing the disk. Also, as described in Table 1, we set the idleness threshold
and the spin-up time to 85.6 sec and 10,000 sec, respectively. Our server network
bandwidth is a 1,000 BASE-T network. We selected three disks as working disks
and the rest of the nine disks as archiving disks. The files we placed on these
disks were the same as those after 3,000 hours have passed in the simulation.
We measured the response time of every access for one hour from this point. At
the beginning of this experiment, the number of read and write requests sent to
the application servers was approximately 240,000 requests.

6.2 Implementation result

Fig. 6 and Fig. 7 show the change in the maximum and average, respectively.
The horizontal axis represents the duration of implementation, while the vertical
axis shows the response time. We can see in Fig. 6 that some files had a response
time of more than 10,000ms, indicating that the files were accessed when the
disks were in power-saving mode. Furthermore, we observed that the files with
a response time over 10,000ms were all stored in the first two archiving disks,
meaning that our proposed method can enable the disk to switch to power-saving
mode. We experimented with the response time of the no-migrating system to
compare it with that in the proposed system. We observed that the overall
average response time of the no-migrating system is 52ms. Meanwhile, the overall
average of the response time of the proposed system is only 86ms (Fig. 7).
Although the proposed system performed slower than the no-migrating system,
we still prefer the proposed system because we can reduce power consumption
by approximately 22%.

7 Conclusion and Future Work

In this study, we proposed a multi-tier power-saving method in storage systems,
targeting cloud content sharing services. The main objective of this study was
to reduce the number of accesses in disks that are in power-saving mode. We
presented a method that performed data migration between two subsets of an
array. One subset, working disks, was always in the active mode, and the other



Fig. 6. Maximum response time.

Fig. 7. Average response time.

subset, archiving disks, switched to power-saving mode whenever there was no
access after a threshold of time. By migrating the files between archiving disks
and working disks, we could reduce the number of accesses, enabling power
conservation. To evaluate our proposed system, we conducted a simulation by
mimicking the actual social service using approximately 60,000 time-series im-
ages. The simulation showed that our system consumed a maximum of 29% and
an average of 22% less energy compared to the system with no file migration
among the disks. Furthermore, our prototype showed that although there is file
migration among the disks, our system still could offer a preferred response time
of 86ms in the overall average.

In future work, it is critical to investigate migration factors because we only
focused on the oldest accessed time and number of accesses. Recently, some
studies apply machine learning to predict the number of views of a file before it
is uploaded [16], [8]. These studies could precisely predict the popularity of files
by using the file itself, its content, and its social context. It would be interesting
if we could apply this technique to our system by predicting the popularity of
files to find the unpopular files to migrate to the archiving disks.



References

1. https://web.500px.com,
2. https://www.seagate.com/www-content/product-content/barracuda-

fam/desktop-hdd/barracuda-7200-14/en-us/docs/100686584y.pdf,
3. Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y.: Energy-efficient

data replication in cloud computing datacenters. Cluster computing 18(1), 385–402
(2015)

4. Bostoen, T., Mullender, S., Berbers, Y.: Power-reduction techniques for data-center
storage systems. ACM Computing Surveys (CSUR) 45(3), 33 (2013)

5. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:
SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. pp.
47–47. IEEE (2002)

6. E. Pinheiro, R.B., Dubnicki, C.: Exploiting redundancy to conserve energy in stor-
age systems. In: Proc. ACM SIGMETRICS Conference on Measurement and mod-
eling of computer systems. pp. 15–26 (2006)

7. Kaushik, R.T., Bhandarkar, M.: Greenhdfs: towards an energy-conserving, storage-
efficient, hybrid hadoop compute cluster. In: Proceedings of the USENIX annual
technical conference. vol. 109, p. 34 (2010)

8. Khosla, A., Das Sarma, A., Hamid, R.: What makes an image popular? In: Pro-
ceedings of the 23rd international conference on World wide web. pp. 867–876.
ACM (2014)

9. Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: a packet-level simulator of
energy-aware cloud computing data centers. The Journal of Supercomputing 62(3),
1263–1283 (2012)

10. M. Storer, K. Greenan, E.M., Voruganti, K.: Pergamum: Replacing tape with en-
ergy efficient reliable, disk-based archival storage. In: Proc. USENIX Conference
on File and Storage Technologies

11. Okoshi, J., Hasebe, K., Kato, K.: Power-saving in storage systems for internet host-
ing services with data access prediction. In: 2013 International Green Computing
Conference Proceedings. pp. 1–10. IEEE (2013)

12. Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based
servers. In: Proceedings of the 18th annual international conference on Supercom-
puting. pp. 68–78. ACM (2004)

13. Q. Zhu, Z. Chen, L.T.Y.Z.K.K., Wilkes, J.: Hibernator: helping disk arrays sleep
through the winter. In: Proc. ACM symposium on Operating systems principles.
pp. 177–190 (2005)

14. S. Gurumurthi, A. Sivasubramaniam, M.K., Franke, H.: Drpm: dynamic speed
control for power management in server class disks. In: ACM SIGARCH Computer
Architecture News

15. Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet,
E., Horner, N., Azevedo, I., Lintner, W.: United states data center energy usage
report (2016)

16. Trzciński, T., Rokita, P.: Predicting popularity of online videos using support vec-
tor regression. IEEE Transactions on Multimedia 19(11), 2561–2570 (2017)

17. Weddle, C., Oldham, M., Qian, J., Wang, A.I.A., Reiher, P., Kuenning, G.: Paraid:
A gear-shifting power-aware raid. ACM Transactions on Storage (TOS) 3(3), 13
(2007)

18. Yao, X., Wang, J.: Rimac: a novel redundancy-based hierarchical cache archi-
tecture for energy efficient, high performance storage systems. In: Proc. ACM
SIGOPS/EuroSys European Conference on Computer Systems. pp. 249–262 (2006)


