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Abstract. In recent years, the parallel computing community has shown
increasing interest in leveraging cloud resources for executing parallel
applications. Clouds exhibit several fundamental features of economic
value, like on-demand resource provisioning and a pay-per-use model.
Additionally, several cloud providers offer their resources with significant
discounts; however, possessing limited availability. Such volatile resources
are an auspicious opportunity to reduce the costs arising from compu-
tations, thus achieving higher cost efficiency. In this paper, we propose
a cost model for quantifying the monetary costs of executing parallel
applications in cloud environments, leveraging volatile resources. Using
this cost model, one is able to determine a configuration of a cloud-based
parallel system that minimizes the total costs of executing an application.
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1 Introduction

On-site compute clusters built of commodity hardware are a very popular plat-
form for executing a broad range of HPC applications. However, this type of
parallel platform requires considerable upfront investments and furthermore,
scalability is limited to static scaling (by manually adding cluster nodes). In
the last years, the cloud has emerged to a powerful and versatile platform for
building parallel execution environments, establishing a promising alternative to
conventional HPC clusters. In particular, cloud computing opens up new oppor-
tunities to explicitly control and optimize monetary costs on the level of indi-
vidual parallel application runs. One can employ typical IaaS (Infrastructure-
as-a-Service) cloud offerings to construct (virtual) parallel environments that
share many characteristics with traditional on-site compute clusters. This holds
especially when using the performance-optimized cloud resources designed for
HPC workloads, recently introduced by many cloud providers. By employing a
simple ”copy & paste” approach, users can substitute their HPC cluster infras-
tructure with cloud-based virtual clusters, harnessing the on-demand self-service
and pay-per-use characteristics of cloud offerings.
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The pay-per-use model turns out to be especially beneficial for institutions
which otherwise would have to deal with underutilized resources or have a re-
stricted budget that prevents an investment for on-site clusters. Moreover, the
on-demand self-service characteristic of cloud offerings allows novel execution
scenarios. For example, jobs submitted to HPC clusters are typically handled by
a scheduling system, stored in a queue and executed later when resources become
available. In contrast, virtually unlimited and immediately available resources of
cloud environments allow the execution of all jobs in parallel at the same cost
but without delays. There already exists a number of activities on utilization of
cloud environments for HPC workloads from both industry and academia. Large
scale experiments in public cloud environments where over 150k processing units
have been utilized give evidence of the feasibility of cloud based HPC [3].

However, there is still a tremendous untapped potential for savings, which can
be harnessed for higher cost efficiency. Particularly promising in this context are
low priced volatile resources, which, however, possess limited availability. Cloud
providers offer such resources with significant discounts, in order to prevent idle
cloud infrastructures. Users can seize these resources for a fraction of the usual
price, under the limitation of having no guarantee of availability. Volatile re-
sources are well suited for a variety of parallel applications. Decisive factors
are the degree of coupling and scalability. The better an application meets these
properties, the higher is the potential to decrease the costs of executions. Among
others, this includes discrete optimization, graph search, constraint satisfaction
solving, and MapReduce. Several published studies have considered the utiliza-
tion of volatile resources for HPC in cloud environments [17], [16], [5]. However,
relationship and impact on the cost efficiency is not yet fully understood.

The work presented in this paper is motivated by the following hypothesis:
Due to their high pricing, it is not adequate to solely rely on traditional reserved
cloud resources. We argue that cost-efficient computations require a fine-tuned
and balanced execution environment configuration, consisting of both volatile
and reserved resources. Which combination of volatile and reserved resources
offers the best cost efficiency depends on the characteristics of both application
as well as resources. In particular, we make the following contributions: 1) The
key research question of our study is to find the number of processors and, more
importantly, the concrete type (reserved or volatile) for which the total mone-
tary costs of a parallel computation are minimal. 2) To address this question,
we propose a novel cost model for quantifying the monetary costs of parallel
computations employing a mix of reserved and volatile processors.

The remainder of the paper is organized as follows: In Section 2, we briefly ad-
dress the background topics of our work. Furthermore, in Section 3, we discuss in
more detail the specific problem we are addressing. Next, Section 4 describes our
cost model for parallel computations in cloud environments. Later, in Section 5,
we evaluate the cost model and investigate the effects of individual parameters
on the total costs. Section 6 gives an overview of related work. Finally, Section 7
concludes the paper and outlines directions for future research.
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2 Background

Analytical modeling of parallel systems - Performance metrics of parallel
systems (a particular combination of application and architecture) are an essen-
tial instrument for evaluation purposes. The most fundamental metrics are the
sequential execution time Tseq and the parallel execution time Tpar(p). While
the former is the time required to solve a given problem by the fastest known
sequential algorithm, the latter is the time required to solve the same problem
in parallel, using p processors. Based on these two fundamental metrics, addi-
tional metrics can be derived. Speedup S(p) =

Tseq

Tpar(p)
indicates the performance

improvement of solving a problem in parallel over a sequential execution. Par-

allel efficiency E(p) = S(p)
p represents the fraction of processing time spent on

essential work. For economic considerations, parallel efficiency is of particular
interest, as it indicates the capitalized fraction of the invested processing ca-
pacity. Besides the ideal case, parallel systems exhibit overhead which manifests
itself as processor idling, inter-processor communication, and excess computa-
tion. The parallel overhead negatively impacts the parallel efficiency and thus
also the scalability of a parallel system, which is characterized by E(p) within a
range of different numbers of processors p [10].

Volatile cloud resources - More and more cloud providers offer volatile re-
sources, including spot-instances of Amazon EC2 [6], preemptible VMs of Google
Compute Cloud [9], and low-priority VMs of Microsoft Azure [4]. Although based
on the same principle, each provider has a slightly different manifestation of this
offering. For example, Amazon employs a sophisticated auction system where
resources are claimed through a bidding process. In contrast, Google and Mi-
crosoft offer such resources for a fixed price that is significantly lower than the
price of traditional resources. In this paper, we assume a prototypical fixed price
model for volatile resources, derived from respective cloud offerings of Google
and Microsoft. According to the conditions of many providers, we also assume
that resources are not withdrawn spontaneously. Prior to resource withdrawal, a
signal is emitted that notifies about the imminent retraction. In this way, cleanup
operations and state storing are performed on demand, which significantly re-
duces the overhead. Moreover, there exists a period that guarantees the least
time of resource availability, otherwise it is not charged. This also means that a
minimum granularity is given for our cost model.

3 Problem Statement

Unlike executing a job on a physical on-site cluster, cloud-based virtual clusters
expose direct cost visibility to the users executing jobs, i.e., the charged costs
are in direct relation to resources requested. This allows flexible, fine-grained
approaches for cost optimization. For example, the user can construct for every
run of an application an individually configured cluster that minimizes the cost
with respect to the concrete situation in which the results of the computation are
needed. However, this flexibility imposes a significant burden on the user. She/he
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has to determine among a multitude of options the concrete configuration of the
cloud-based virtual cluster.

In the first place, the employed number of processors has a significant impact
on the resulting costs. An important factor that determines the optimal number
of processors with respect to the monetary costs is the scalability of the parallel
application at hand: At a certain scale, increasing the number of processors is
not profitable, i.e., it is not possible to retain adequate benefits from purchas-
ing additional processors, like an increased speedup of computation or a higher
processing rate. Basically, the scalability characteristics of the application at
hand must be determined by the user. This can, for example, be accomplished
by measuring Tpar(p) for different numbers of processors p, using prototypical
input data. Other cost-related parameters that must be considered are the ratio
of reserved and volatile processors, the availability of volatile processors, and the
prices for both types of processors.

In this paper, we aim to systematically simplify the process of constructing
cost-optimal cloud-based clusters by formalizing their costs with a cost-model,
resulting in a novel approach for cost optimization of parallel cloud computa-
tions. We discuss our cost model in detail in the next section.

4 Cost Model

Basically, a cost model for parallel cloud computing should consider pay-per-use
billing and also reflect the two conflicting objectives fast processing versus low
monetary costs. In our previous work, we presented a cost model that applies the
concept of opportunity costs to model the corresponding trade-off [12]. In our
case, the opportunity costs express the lost monetary profits of delayed results
from computations. The cost function is given in Equation 1.

C(p) = Tpar(p) ∗ p ∗ cπ︸ ︷︷ ︸
Proc. costs

+Tpar(p) ∗ cω︸ ︷︷ ︸
Opport. costs

(1)

The cloud provider’s price for a processor per time unit is denoted by cπ,
whereas cω represents the lost monetary profits of delayed results per time unit.

In this work, we extend the model to capture an execution environment
consisting of reserved and volatile processors. These processor types do not only
differ in terms of their price but also exhibit a different degree of availability.
While a processor of type reserved is available at any time, for a processor of type
volatile only a limited availability is guaranteed. Figure 1 illustrates an example
of a parallel computation, employing both reserved and volatile processors. Given
that a volatile processor is not available anymore, it is compensated through a
(more expensive) reserved processor. Let v denote the current number of volatile
processors employed for computation, and let r denote the current number of
reserved processors. The total number of required processors is denoted by p,
whereby p = r+ v holds true at any time. Referring to a single bar of this chart,
we will use the term configuration. A configuration is a tuple (reserved, volatile)
that defines the number of utilized processors of each type.
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Fig. 1. Exemplary parallel computation employing volatile and reserved processors.

An essential characteristic of a volatile processor is the availability α, defining
the probability of being available at any given point in time. For example, volatile
processors of the Google Cloud Platform are advertised with an availability of
85%-95%. Equation 2 defines the probability of having a configuration with v
volatile processors available, out of the total number of required processors p.

R(v, p, α)

probability of ...

= (αv)︸︷︷︸
...v volatile procs.
being available

∗ (1− α)p−v︸ ︷︷ ︸
...(p− v) volatile procs.

being unavailable

∗
(
p

v

)
︸︷︷︸

no. of comb.

(2)

Let tr,v denote the sum of periods spent in configuration (r, v). The total of
all periods tr,v, where execution takes place with configuration (r, v), constitute
the total execution time of a parallel computation Tpar(p) (cf. Equation 3).

Tpar(p) =

p∑
i=0

tp−i,i (3) tr,v = Tpar(p) ∗R(v, p, α) | p = r + v (4)

The probability R(v, p, α) for the configuration (r, v) further allows quanti-
fying the fraction of Tpar(p) that is spent in this configuration, i.e, tr,v, which is
shown in Equation 4.

With the findings from this discussion, we propose the cost function given in
Equation 5 to formalize our cost model.

C(p) =

p∑
i=0

((
Tpar(p) ∗R(i, p, α)

)
︸ ︷︷ ︸

tp−i,i

[A]

∗
(

(p− i) ∗ cπr︸ ︷︷ ︸
reserved
processors

[B]

+ i ∗ cπv︸ ︷︷ ︸
volatile

processors
[C]

))
+ Tpar(p) ∗ cω︸ ︷︷ ︸

opport.
costs
[D]

(5)
The total costs are comprised of the costs resulting from each configuration,

determined by the period tr,v spent in it during execution as well as the reserved
and volatile processors’ prices cπr and cπv , respectively.

A drawback of utilizing volatile processors is the higher overhead, which
is caused by mechanisms for fault tolerance. However, as stated in Section 2,
during regular operation, this overhead is small since cleanup and state storing
are performed on demand when receiving a withdrawal notification. Referring
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to the guaranteed period of resource availability, this also holds true for the
overhead of re-establishing a computation on another resource. In a first step,
we consider this overhead with a constant cost factor for each volatile processor,
which is part of cπv . For an examination of the individual cost constituents, we
divided Equation 5 into four parts. [A], [B], and [C] are configuration specific,
defining the costs of the cloud resources. Based on Equation 4, [A] quantifies
tr,v for each configuration and is applied in [B] (reserved) and [C] (volatile) to
determine the total costs of each. Finally, [D] expresses the opportunity costs,
which are independent of a computation’s configurations.

5 Evaluation

For evaluating the cost models’ validity, we examine different aspects of Equa-
tion 5. Specifically, we investigate the characteristics that influence the total
costs of computations for exemplary scenarios with different scalability. In each
scenario, we assume a sequential execution time of Tseq = 12h and model the
parallel execution time Tpar(p) for a constant number of processors p by Am-

dahl’s law: Tpar(p) = β∗Tseq+
(1−β)∗Tseq

p . The scalability of a parallel application
is characterized by its sequential fraction 0 ≤ β ≤ 1.

First, we consider five different parallel applications, which are characterized
by different sequential fractions 0.01 ≤ β ≤ 0.3. The left graph in Figure 2
illustrates the total monetary costs C(p) for parallel computations of these ap-
plications. We set the prices for reserved and volatile processors cπr

and cπv
as

well as the availability α in accordance with the advertised ideal situation of the
Google Cloud Platform [9]. The values of all parameters are shown in the figure.
Since opportunity costs are highly application-specific, we assume the shown
value for demonstration purposes. Concerning the total costs, it is apparent
from this graph that all computations possess a similar behavior. Particularly,
all curves of the cost function C(p) have a unimodal shape, exhibiting only a
single minimum. At all scales beyond this cost minimum, one would pay for
inefficiently used computing resources, i.e., the return (in the form of decreas-
ing opportunity costs) is lower than the investment for additional processors.
We also see that the scalability (i.e., the sequential fraction β) has a significant
influence on how strong the costs increase after the minimum is reached.

Next, we consider the influence of the opportunity costs on the total costs.
As before, we examine different scenarios, which are characterized by different
values of cω, where 0$/h ≤ cω ≤ 10$/h. The values of cπr

, cπv
, and α are identical

to the previous scenario, whereas the sequential fraction is set to β = 0.1.
The right graph in Figure 2 illustrates the corresponding total monetary costs
C(p). Apparent is the strong correlation between the shape of the cost curves
in both graphs, however, in a mirrored arrangement. This confirms that the
model accurately specifies the two conflicting objectives fast processing and low
monetary costs. The influence of the opportunity costs is particularly evident in
the case of cω = 0$/h. Since there are no cost benefits at all for speeding up the
computation, p = 1 is the cost minimal computing infrastructure. In contrast,
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Fig. 2. Costs for parallel computations with different scalability and opportunity costs.

increasing cω also increases the number of processors p with the cost minimal
computing infrastructure, since the reduction of opportunity costs outweighs the
costs for additional processors.

Next, we focus on the availability α and price cπv of a volatile processor.
Particularly, we want to assess to what extent they influence the total costs.
Hence, we consider two scenarios with different cπv

and 0 ≤ α ≤ 1, while keeping
the other values constant. The left graph in Figure 3 shows the total costs for
the first scenario, whereas the right graph shows the second scenario, which is
characterized by an increased volatile processor price. The first one shows a clear
trend of decreasing total costs as the availability of volatile processors increases.
While this behavior is no surprise at all, one can furthermore observe that in
the right graph it is much less pronounced. The potential benefit of employing
volatile processors for parallel computations can only be capitalized if their price
is significantly smaller, compared to reserved processors. If this is the case, they
offer enormous economic potential for cost minimization. As illustrated in the
left graph, the savings are considerable, even at lower degrees of availability.

6 Related Work

There exists a growing body of research on the utilization of cloud environments
for HPC workloads. To benefit from the cloud, recent studies found that HPC
applications have to be adapted to suit cloud characteristics like on-demand re-
source access, elasticity, and pay-per-use [7], [15], [13]. In [14], the authors deal
with elastic scaling and investigate on a framework and runtime system for appli-
cations with dynamic task parallelism. The demand for high-performance cloud
systems was also recognized by cloud providers, which launched performance-
optimized VMs with InfiniBand like Microsoft H-Series [1]. Complementary,
tools like elasticHPC [2] facilitate the execution of HPC workloads by automat-
ing the creation of clusters in the cloud, enabling monitoring, and providing a
cost management to start and terminate jobs based on specific price constraints.
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Fig. 3. Costs for parallel comp. with volatile procs. of different availability and price.

In recent years there has been considerable interest in utilizing volatile cloud
resources for HPC [5], [2]. Several studies investigated the benefits for various
classes of parallel applications, covering traditional applications that employ
MPI [17], as well as decoupled MapReduce applications [16]. Contrary to our
work, the focus of most of these studies has been mainly on bidding strategies
and automated bidding processes.

Cost modeling in the domain of parallel- as well as cloud-computing has been
the topic of several studies during the last decade. Current cost models for cloud-
based web-applications are typically based on pay-per-use and defined in terms
of monetary costs [18], [8]. For parallel computations costs are more abstractly
defined, using performance metrics like total processing time [10]. The authors
of [11] put together both concepts, extending the model for parallel computations
towards pay-per-use of the cloud model. Our previous study [12], presents a cost
model for parallel cloud applications to determine the monetary costs based on
both execution time and utilized cloud resources.

7 Conclusion

In this paper, we presented a cost model for quantifying the monetary costs
of parallel computations, performed in cloud-based environments that consist
of both reserved and volatile resources. To adequately model the costs, we ad-
dressed a wide range of economic aspects. Specifically, we considered the trade-off
between availability and price of volatile processors in the context of costs caused
by delayed results of a computation. Our evaluation revealed that volatile proces-
sors offer enormous economic potential that can be harnessed for cost minimiza-
tion. Thus, our approach helps HPC users to exploit the potential of cost-saving
further when employing cloud resources for executing their parallel applications.
In future work, we plan to extend our cost model towards auction-based pricing
models for volatile resources like the Amazon EC2 spot instances.
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